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The propagation and structure of a pressure (density, velocity, or temperature) distur- 
bance in a volume containing solid particles are of considerable theoretical and practical 
significance. Of particular interest is the structure of a transient disturbance, since the 
dimensions of engineering equipment utilizing heterogeneous media are such that a steady- 
state structure cannot evolve. Typical of such equipment are solid-propellant rocket engines 
and nuclear reactors using a disperse heat-transfer agent. 

Davidson [I] gives an equation describing the evolution of finite-amplitude waves in a 
medium containing an aerosol. This equation has the form of the Burgers equation augmented 
with integral terms to account for mechanical and thermal relaxation processes. Interphase 
heat transfer is taken into account by Newton's law, but the latter represents a crude approx- 
imation for highly transient states. 

In this study particular attention is given to the derivation and analysis of equations 
for the evolution of finite-amplitude disturbances when the system involves a single relaxa- 
tion process associated with transient heat transfer between the aerosol particles and the gas. 

The volume fraction of solid particles is assumed to be so small that interaction between 
individual particles can be neglected. This restriction permits the detailed heat-transfer 
processes to be analyzed independently of the overall dynamical problem. 

We assume that the wavelength spans a sufficient number of particles for the mixture to 
be treated as a continuum. The disturbances are assumed to be plane and have a long wave- 
length. Under the stated assumptions the propagation of disturbances can be investigated 
within the contact of the homogeneous model [2]. 

We consider the evolution of disturbances in an aerosol containing solid particles of 
equal radius 6, density pp, and temperature 0 in the approximation of the single-velocity 
model. The number of particles m is assumed to be constant in unit volume, and their volume 
so small as to be negligible in the conservation equations in comparison with the volume 

occupied by the gas [2]. 

Neglecting viscosity and heat conduction in the conservation equations and retaining 
only thermal interaction between phases, we have the following system of equations for 
describing the process: 

Pt + (up)~ = O, put + puu~ + n(p~)~ = O, 
(1)  

pcv~t + p c v u ~  § Rp~u~ = Q, Ot - aO~ - ( 2 ~ 0 ~  = O, 

The first three equations are the equations of continuity, motion, and energy for an ideal 
gas, where p, u, and 0 are the density, velocity, and temperature of the gas; Q is the total 
heat flux from the gas to the particle cloud; R is the universal gas constant; and c v is the 
isochoric specific heat. The fourth equation of the system (i) is used to determine the 
thermal interaction between a particle and the gas, where a is the thermal diffusivlty and 
r is the radial distance. This equation is solved subject to the boundary conditions 

t=O~ 0 = 0 o = 0 ,  (2) 
r = 6  for t > O ,  0 = 0  6 = ~ ( ~ ,  O0/Orlr=o=O. 

It can also be solved under Cauchy boundary conditions. 
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We analyze the solution of the particle heat-conduction equation under boundary condi- 
tions (2). It has the form [3] 

y2 ( o O= ~ , , r ~ - - i ) n + * s i n  n u ~  ~ fi(T) e d~. 
~=I 0 

The heat flux toward a particle is written in the form 

n ~ 2 a  

qp 
n ~ l  o 

where ~ i s  t h e  p a r t i c l e  t h e r m a l  c o n d u c t i v i t y .  In  t h e  case  n a v a a ( t  -- T)/6 a >> 1 t he  l o n g -  
wave ( l b w - f r e q u e n c y )  l i m i t  i s  r e a l i z e d ,  such t h a t  ~(~) i s  a s l i g h t l y  v a r y i n g  f u n c t i o n  and 
can be expanded into a series in a neighborhood of the point t with respect to a small time 
lag (t -- ~) : 

o = o (t)  - ( t  - - . . .  

Retaining only terms through the first order, we substitute the first two terms of the series 
into the integrand. Using the fact that na~aa(t -- T)/6 a -~ "exp [--n~aa(t -- T)/~ 2] -~ 0 [al- 
ready for na~a(t -- T)/~ 2 > 4.6 the function exp [--nS~Sa(t -- T)/~ 2] < 0.01], we finally ob- 
tain 

,[ 0 ('~) e d'~ = K f i  ( t)  - -  L ~-, 

where K = 6~/n~waa; L ffi ~"/n~w~a ~, and the heat flux 

q~=~=z --2 K~f-- ~-~j --A'p~c~-ff+lJp~cpo-;~f, (3) 

where Cp is the specific heat of the particle material and 

A'= ~ 2 t B'= 2 1 

We use the expression (3) derived above to write the energy equation in the form 

POt + puOx + p R_ Oux = - -  AppO t + ~Pppr0,,, 
c V 

, 4 s A = M r  Tv=Mc--~tb--~, = 
(4) 

Now our process is described by the first and second equations of the system (I) and Eq. (4). 

We consider the propagation of infinitesimally small disturbances in such a system. We 
assume that the relative deviations of the density, velocity, and temperature from their 
equilibrium values [(p -- Po)/Po, u/c,, (0 -- 0o)/@o] are first-order quantities. Substituting 
P = Po + P' u' , U -- , 0 = Oo + O' into the system of equations derived above and discarding 
second- and higher-order terms, we obtain 

t t t R P 
P t + P o U x = 0 ,  Po ut + Po ~ '~+ROop~=0,  

! t I 

Ot (Po + App) + Po (x --  ' 0. (5) t) ~}oUx -- zpP/~tt = 

The system (5) is the initial system for the derivation of one wave equation describing the 
propagation of sound waves in the given media. We seek a solution of this system in traveling- 
wave form (x > 0)0' - 0o exp[i(kx- ~t)], u' ~ Co exp[i(kx- ~t)], 0' ~ O o exp[i(kx- ~t)], 
where a functional relationship exists between the wave number k and the frequency m, and k is 
a complex quantity in general. This relationship is determined from the compatibility condi- 
tion for the solutions of (5), which yields the equations 

0 z 
�9 p - ~  ( u t t -  c~u=) --  Du,t -~ c~u= = O, (6) 

"~pCO s -  iD~ ~ --  k%)Tpc~ + ik2co = O, 

603 



in which 

D P~ + AP~ /~o 3 U0o + Ap~ , 
= ; = c| -~o = c~; 'r~ = ~P=,/Po. 

Po Po 

For the phase velocity Vp = ~/k we obtain from (6) 

Vm = [(c~r ~c~)/((o~:,- ~D)] '/3. 

Separating real and imaginary parts VpR and Ypl m in the latter expression, we have 

3 3 3 ~ ' "~ '~ 4 ' 4  ' 3 3 3 ' ~o+-~,~oo ~ / ( -~ .~oo+~o) ( -~ .+~  ). 
V~im = - 2 ( . 3 . ~  + ~ , )  + V ~ Co, W ' + ~ 3 ) ,  , 

(7) 

(8) 

-,.%3 [ D.3 v~a= " ~ "oo- ~~ ( 9 )  
S 2  2 :  3 2 2 2  ' 3 ~.(..-.~+, ) [ - ( , . o  + ~ ~oo)+ V(,~o + -  . . . 3  ~.ooo) + ( %  ,c3oo _ ....~13]. 

These equations are valid for small values of ~T o, since we have imposed beforehand the con- 
straint ~Tp < i. Expanding the phase velocity into a series about mTp -- 0 and retaining only 
terms through the first order with respect to ~rp, we have 

Calculating the coefficients of the powers of mTp by means of Eq. (7), we obtain 

Co . 9  D "9 c o (0~p o o -  o -  + 0 [(O)Tp)3l, v , = v ~ - ~  ooB 1/~ 2 

where the real and imaginary dispersions are 

c o 

VpR = ~ - ~  : ( lO )  

3 3 m~p (ii) 
C O - -  D c o o  c O 

vpi~= D4 V~ 2" 

The asymptotic relations (i0) and (ii) well describe the behavior of the total dispersion 
curves (8) and (9) in the domain 

0<mt~< [ %2-Dcl ]~/3 
Dc~ 

The dispersion curves for the system of equations (5) in the case of copper particles 
with a radius of 30 ~ and weight concentration of 0.i are given in Fig. i, in which curves 1 
and 2 represent the asymptotic behavior of the imaginary and real parts, respectively: 

I[--pI~l = Wp,~ Vmax WpI~I. 

We consider the finite-amplitude waves traveling in the positive direction. We trans- 
form to an accompanying coordinate system, T = t --x/c.. Inasmuch as the wave amplitudes 
are small, the distortions of the wave profile due to dissipation and nonlinearity will also 
be small at distances of wavelength order, and the process must be described by a function of 
the form ~(~x, T), where ~ is a first-order quantity. In accordance with the substitution 
we have 

0 0 0 1 0 o 
aT : a t ,  az = coo o r  H - F T . .  

Now the system comprising the first two equations (i) and Eq. (4) are written as follows in 
the variables T and x, correct to within second-order accuracy: 

ap' Po au" .z. au' p" au" u' ap" ---- O, 
a'r coo aT ~ ~Po ~ coo a,c coo aT 

~Ou" p, an' Po R 00'  ao" po ~' o~' Ro' o~' R~ o op' + ~R,0 ~ op' Ro" op' = 0. (12)  
Po ~ - { -  aT c= or -l-[~po R ox %o a,~ c .  a,~ c . a . ~  o:r coo o,~ 

604 



VpR I Vp I.~I 

Cool ~ 0 

Fig. i 

00' _, a~' Po u' 0@' PoOo (x -- t) Ou' O~' 
. Po "~" -k u 'o~ coo a~ coo 0~ + pPoOo (x - -  1) ~T 

P'~o(X--l) Ou' Po O'(~-~)Ou' , . O0' OsO ' 
-- �9 % a,~ % aT d- app -~- -- ~ppp ~ = O. 

I t  i s  w e l l  known [4]  t h a t  a s i n g l e  p a r t i a l  d i f f e r e n t i a l  equa t ion  of  o rder  k can be r e -  
duced to a system of  k f i r s t - o r d e r  equa t ions .  Ana logous ly ,  a system of  k f i r s t - o r d e r  p a r t i a l  
d i f f e r e n t i a l  equat ions  can sometimes be reduced by d i f f e r e n t i a t i o n  =o a s i n g l e  equat ion  of 
o rder  k.  One equa t ion ,  of course,  i s  more r e a d i l y  amenable to p h y s i c a l  a n a l y s i s ,  end to ob- 
t a i n  a single equation is often the sole objective of many papers. The remarkable thing in 
thls approach is the fact that the equation so obtained sometimes proves to be already well 
known and has been analyzed in detail. 

The system of equations (12) is reducible =o a single equation by analogy with [5]. For 
this purpose we multiply the first equation of the system by I/po, the second by i/pot., and 
the third by i/poe.. Adding the results and replacing P'/Po by u'/c. as well as 0'/0o by 
(x-- l)u'/c m in all second-order terms, we arrive at the Burgers equation 

2px ou" u' ou' ( ~  + 2) ou" _ _  _ _  

ox c~ o'c Oz Coo ~ PoJ Po coo O~ 

o r ,  i n  d i m e n s i o n l e s s  form w i t h  t h e  i n c l u s i o n  o f  2~ i n  x ,  we have  

au au (x '+2) ou(  ~)x--I "~p t~,• O'u = 0  ' (13) 
a--~--u-~ x " ~ -  t - - A  ~" r Po x a~ 

where T is the wave period. The coefficient in front of @au/B'ra is the viscosity of the 
aerosol 

_2 8 ~ Cp 
"% = coo ~a c v M 

in dimensioned form. The reverse substitution u'/c. = P'/Po and 0'/0o = (x-- l)p'/po or u'/ 
c~ = 0'/(~-- i)@o and P'/Po = 0'/(~ -- i)0o leads to the same equation for the increments of 
the density p' and temperature @'. The same approach with the inclusion of heat transfer be- 
tween a gas bubble and a surrounding liquid during transmission of a wave disturbance has been 
used in [6]. 

Thus, the propagation of long-wave disturbances of finite amplitude in aerosols is de- 
scribed by the Burgers equation wlth coefficients that incorporate information on the individ- 
ual characteristics of the particles. It has been shown that transient heat transfer between 
the particles and the gas In the wave induces a relaxatlonal viscosity. This effect has been 
deduced for the first time. The solutlon of this equation has been investigated in [5, 7]; 
in particular, the familiar Hopf eubs=l=u=lon can be used to reduce Eq. (13) to the linear 
heat-conduction equation. It qualitatively describes the evolution of a shock wave in which 
nonlinearity is equalized by relaxa=ional viscosity, which is induced here by transient inter- 
phase heat transfer. Finite dls=urbences are attenuated with time until their amplitude 
diminishes to zero. 

It can be shown that when longitudinal heat conduction and shear viscosity are included 
in the initial system of equations, they add linearly to the resulting relaxa=ional viscosity. 
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THERMOCAPILLARY MOTION IN A GAS--LIQUID MIXTURE 

O. V. Voinov and V. V. Pukhnachev UDC 532.69 

i. Equation of Motion. Let a viscous incompressible liquid with gas bubbles be found 
in the region of space ft. The number of bubbles is sufficiently large that a number a << d 
can be found, where d is the diameter of ~, such that any sphere of radius a belonging to 
contains a number of bubbles N >> i. The bubbles are assumed to be spheres of identical 
radius R. If the characteristic distance between bubble centers ~ is sufficiently small in 
comparison with the characteristic distance L over which the mean mixture parameters vary, 
the concepts of mechanics of heterogeneous media (see, e.g., [i]) are valid. 

If the external mass forces are small and the acceleration of the liquid is also small, 
the main source of motion is the inhomogeneity of the temperature field in the liquid and 
the thermocapillary effect induced by it [2]. 

We denote by c the bulk concentration of the gas, by u and v the average velocities of 
the gas and liquid phases, respectively, and by T the temperature. The exact continuity 
equation (within the scope of fluid mechanics) for the liquid phase is 

O(i -- c)mt -5 div[(l -- c)v] = 0. (I.i) 

Allowing the gas density to satisfy pg = const, the continuity equation for the gas 
phase is similar to (i.i): 

8c/Ot -5 div(cu) = O. (i. 2) 

The possible gas-exchange process between bubbles and the liquid due to diffusion pro- 
cesses is not taken into account. For simplicity, we do not take into account either the 
more important process of bubble coagulation, which up to a certain extent is Justified in 
the case of a dilute system. 

Taking into account that the shear viscosity of a suspension of gas bubbles equals 
(i + c)~, where ~ is the viscosity of the liquid, and neglecting quadratic terms of order 
c a in the viscous stresses, one can write the momentum equation of the liquid in the form 

(l - -  c)dv/dt = --P-*VP -5 (t - -  c)g -5 2 d iv[( i  + c)vS],  ( 1 . 3 )  

where S is the velocity deformation tensor; p, pressure; and $, acceleration of the external 
mass forces. Equation (1.3) is valid for small Reynolds numbers of bubble flow and for 
sufficiently large characteristic times of motion, when effects of associated bubble masses 
can be neglected. 
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